Could not find function read csv


The most common way that scientists store data is in Excel spreadsheets. While there are R packages designed to access data from Excel spreadsheets (e.g., gdata, RODBC, XLConnect, xlsx, RExcel), users often find it easier to save their spreadsheets in comma-separated values files (CSV) and then use R’s built in functionality to read and manipulate the data. In this short lesson, we’ll learn how to read data from a .csv and write to a new .csv, and explore the arguments that allow you read and write the data correctly for your needs.

Read a .csv and Explore the Arguments

Let’s start by opening a .csv file containing information on the speeds at which cars of different colors were clocked in 45 mph zones in the four-corners states (CarSpeeds.csv). We will use the built in read.csv(…) function call, which reads the data in as a data frame, and assign the data frame to a variable (using <-) so that it is stored in R’s memory. Then we will explore some of the basic arguments that can be supplied to the function. First, open the RStudio project containing the scripts and data you were working on in episode ‘Analyzing Patient Data’.

Changing Delimiters

The default delimiter of the read.csv() function is a comma, but you can use other delimiters by supplying the ‘sep’ argument to the function (e.g., typing sep = ‘;’ allows a semi-colon separated file to be correctly imported – see ?read.csv() for more information on this and other options for working with different file types).

The call above will import the data, but we have not taken advantage of several handy arguments that can be helpful in loading the data in the format we want. Let’s explore some of these arguments.

The header Argument

The default for read.csv(…) is to set the header argument to TRUE. This means that the first row of values in the .csv is set as header information (column names). If your data set does not have a header, set the header argument to FALSE:

Clearly this is not the desired behavior for this data set, but it may be useful if you have a dataset without headers.

The stringsAsFactors Argument

In older versions of R (prior to 4.0) this was perhaps the most important argument in read.csv(), particularly if you were working with categorical data. This is because the default behavior of R was to convert character strings into factors, which may make it difficult to do such things as replace values. It is important to be aware of this behaviour, which we will demonstrate. For example, let’s say we find out that the data collector was color blind, and accidentally recorded green cars as being blue. In order to correct the data set, let’s replace ‘Blue’ with ‘Green’ in the $Color column:

What happened?!? It looks like ‘Blue’ was replaced with ‘Green’, but every other color was turned into a number (as a character string, given the quote marks before and after). This is because the colors of the cars were loaded as factors, and the factor level was reported following replacement.

Read more: Lapponia likör

To see the internal structure, we can use another function, str(). In this case, the dataframe’s internal structure includes the format of each column, which is what we are interested in. str() will be reviewed a little more in the lesson Data Types and Structures.

We can see that the $Color and $State columns are factors and $Speed is a numeric column.

Now, let’s load the dataset using stringsAsFactors=FALSE, and see what happens when we try to replace ‘Blue’ with ‘Green’ in the $Color column:

That’s better! And we can see how the data now is read as character instead of factor. From R version 4.0 onwards we do not have to specify stringsAsFactors=FALSE, this is the default behavior.

The Argument

This is an extension of the stringsAsFactors argument, but gives you control over individual columns. For example, if we want the colors of cars imported as strings, but we want the names of the states imported as factors, we would load the data set as:

Now we can see that if we try to replace ‘Blue’ with ‘Green’ in the $Color column everything looks fine, while trying to replace ‘Arizona’ with ‘Ohio’ in the $State column returns the factor numbers for the names of states that we haven’t replaced:

We can see that $Color column is a character while $State is a factor.

Updating Values in a Factor

Suppose we want to keep the colors of cars as factors for some other operations we want to perform. Write code for replacing ‘Blue’ with ‘Green’ in the $Color column of the cars dataset without importing the data with stringsAsFactors=FALSE.


The strip.white Argument

It is not uncommon for mistakes to have been made when the data were recorded, for example a space (whitespace) may have been inserted before a data value. By default this whitespace will be kept in the R environment, such that ‘ Red’ will be recognized as a different value than ‘Red’. In order to avoid this type of error, use the strip.white argument. Let’s see how this works by checking for the unique values in the $Color column of our dataset:

Read more: Md highlight flags

Here, the data recorder added a space before the color of the car in one of the cells:

Oops, we see two values for red cars.

Let’s try again, this time importing the data using the strip.white argument. NOTE – this argument must be accompanied by the sep argument, by which we indicate the type of delimiter in the file (the comma for most .csv files)

That’s better!

Specify Missing Data When Loading

It is common for data sets to have missing values, or mistakes. The convention for recording missing values often depends on the individual who collected the data and can be recorded as n.a., -, or empty cells “ “. R recognises the reserved character string NA as a missing value, but not some of the examples above. Let’s say the inflamation scale in the data set we used earlier inflammation-01.csv actually starts at 1 for no inflamation and the zero values (0) were a missed observation. Looking at the ?read.csv help page is there an argument we could use to ensure all zeros (0) are read in as NA? Perhaps, in the car-speeds.csv data contains mistakes and the person measuring the car speeds could not accurately distinguish between “Black or “Blue” cars. Is there a way to specify more than one ‘string’, such as “Black” and “Blue”, to be replaced by NA


or , in car-speeds.csv use a character vector for multiple values.

Write a New .csv and Explore the Arguments

After altering our cars dataset by replacing ‘Blue’ with ‘Green’ in the $Color column, we now want to save the output. There are several arguments for the write.csv(…) function call, a few of which are particularly important for how the data are exported. Let’s explore these now.

If you open the file, you’ll see that it has header names, because the data had headers within R, but that there are numbers in the first column.

The row.names Argument

This argument allows us to set the names of the rows in the output data file. R’s default for this argument is TRUE, and since it does not know what else to name the rows for the cars data set, it resorts to using row numbers. To correct this, we can set row.names to FALSE:

Read more: Free printable wildlife wood burning patterns

Now we see:

Setting Column Names

There is also a col.names argument, which can be used to set the column names for a data set without headers. If the data set already has headers (e.g., we used the headers = TRUE argument when importing the data) then a col.names argument will be ignored.

The na Argument

There are times when we want to specify certain values for NAs in the data set (e.g., we are going to pass the data to a program that only accepts -9999 as a nodata value). In this case, we want to set the NA value of our output file to the desired value, using the na argument. Let’s see how this works:

Now we’ll set NA to -9999 when we write the new .csv file:

And we see:

Key Points

  • Import data from a .csv file using the read.csv(…) function.

  • Understand some of the key arguments available for importing the data properly, including header, stringsAsFactors,, and strip.white.

  • Write data to a new .csv file using the write.csv(…) function

  • Understand some of the key arguments available for exporting the data properly, such as row.names, col.names, and na.

Related Posts